skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Giani, Paolo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent studies have highlighted the importance of accurate meteorological conditions for urban transport and dispersion calculations. In this work, we present a novel scheme to compute the meteorological input in the Quick Urban & Industrial Complex () diagnostic urban wind solver to improve the characterization of upstream wind veer and shear in the Atmospheric Boundary Layer (ABL). The new formulation is based on a coupled set of Ordinary Differential Equations (ODEs) derived from the Reynolds Averaged Navier–Stokes (RANS) equations, and is fast to compute. Building upon recent progress in modeling the idealized ABL, we include effects from surface roughness, turbulent stress, Coriolis force, buoyancy and baroclinicity. We verify the performance of the new scheme with canonical Large Eddy Simulation (LES) tests with the GPU-accelerated FastEddyEquation missing<#comment/>solver in neutral, stable, unstable and baroclinic conditions with different surface roughness. Furthermore, we evaluate QUIC calculations with and without the new inflow scheme with real data from the Urban Threat Dispersion (UTD) field experiment, which includes Lidar-based wind measurements as well as concentration observations from multiple outdoor releases of a non-reactive tracer in downtown New York City. Compared to previous inflow capabilities that were limited to a constant wind direction with height, we show that the new scheme can model wind veer in the ABL and enhance the prediction of the surface cross-isobaric angle, improving evaluation statistics of simulated concentrations paired in time and space with UTD measurements. 
    more » « less
  2. Abstract We present a new ensemble of 36 numerical experiments aimed at comprehensively gauging the sensitivity of nested large-eddy simulations (LES) driven by large-scale dynamics. Specifically, we explore 36 multiscale configurations of the Weather Research and Forecasting (WRF) Model to simulate the boundary layer flow over the complex topography at the Perdigão field site, with five nested domains discretized at horizontal resolutions ranging from 11.25 km to 30 m. Each ensemble member has a unique combination of the following input factors: (i) large-scale initial and boundary conditions, (ii) subgrid turbulence modeling in thegray zoneof turbulence, (iii) subgrid-scale (SGS) models in LES, and (iv) topography and land-cover datasets. We probe their relative importance for LES calculations of velocity, temperature, and moisture fields. Variance decomposition analysis unravels large sensitivities to topography and land-use datasets and very weak sensitivity to the LES SGS model. Discrepancies within ensemble members can be as large as 2.5 m s−1for the time-averaged near-surface wind speed on the ridge and as large as 10 m s−1without time averaging. At specific time points, a large fraction of this sensitivity can be explained by the different turbulence models in the gray zone domains. We implement a horizontal momentum and moisture budget routine in WRF to further elucidate the mechanisms behind the observed sensitivity, paving the way for an increased understanding of the tangible effects of the gray zone of turbulence problem. Significance StatementSeveral science and engineering applications, including wind turbine siting and operations, weather prediction, and downscaling of climate projections, call for high-resolution numerical simulations of the lowest part of the atmosphere. Recent studies have highlighted that such high-resolution simulations, coupled with large-scale models, are challenging and require several important assumptions. With a new set of numerical experiments, we evaluate and compare the significance of different assumptions and outstanding challenges in multiscale modeling (i.e., coupling large-scale models and high-resolution atmospheric simulations). The ultimate goal of this analysis is to put each individual assumption into the wider perspective of a realistic problem and quantify its relative importance compared to other important modeling choices. 
    more » « less